

information society technologies

#### ARTIST Network of Excellence

## ARTIST Summer School On Real-Time Scheduling

Giorgio Buttazzo

University of Pavia

International Collaboration Day

October 11<sup>th</sup>, 2003 Philadelphia



October 11<sup>th</sup>, 2003 Philadelphia

#### Aims

- Give an overview of the main scheduling algorithms for supporting the development flexible RT systems.
- Clear the main misconceptions.
- Train future engineers to facilitate the transition of important results from theory to practice.



October 11<sup>th</sup>, 2003 Philadelphia

# Target

- Graduate students
- PhD students
- Computer Engineers

#### **Requirements**

- background on computer science and operating systems.
- no specific knowledge is required to understand the course
- all new concepts are explained and illustrated with concrete examples.



International

Collaboration

Day

October 11<sup>th</sup>,

2003

Philadelphia

#### Structure

5 days – 6 hours per day:

| day 1 | Scheduling theory         |
|-------|---------------------------|
| day 2 | Fixed Priority Scheduling |
| day 3 | Offline Scheduling        |
| day 4 | Real-Time Networks        |
| day 5 | QoS Management            |



October 11<sup>th</sup>, 2003 Philadelphia

# Day 1: Scheduling theory

Giorgio Buttazzo – Univ. of Pavia

- Basic concepts of real-time computing
- Derivation of timing constraints
- Task models
- Feasibility analysis of specific scheduling algorithms
- Periodic and aperiodic service
- Handling overload conditions



## **D2: Fixed Priority Scheduling**

Alan Burns – Univ. of York

International Collaboration Day

October 11<sup>th</sup>, 2003 Philadelphia

- Fixed priority algorithms
- Priority inheritance protocols
- Response Time Analysis
- Extensions to fault-tolerance
- Programming issues
- Advanced reaserch topics



October 11<sup>th</sup>, 2003 Philadelphia

# **Day 3: Off-line Scheduling**

Gerhard Fohler- Malardalen University

- Table-driven approach to scheduling
- Time-triggered vs. Event-triggered systems
- Handling complex timing constraints
- Off-line schedule construction
- Integrating off-line and on-line approaches



October 11<sup>th</sup>, 2003 Philadelphia

#### **Day 4: Real-Time Networks**

Luis Almeida – Univ. of Aveiro

- Basic concepts on real-time communication networks
- Real-Time message scheduling
- Synchronization issues
- Application service models
- Case studies: standard comm. protocols
- New trends: wirelss nets, sensor nets, ...



October 11<sup>th</sup>, 2003 Philadelphia

# Day 5: QoS Management

Marisol Garcia Valls – Univ. Carols III de Madrid

- Problem of resource management for QoS control in
  - centralized systems
  - distributed systems
- Existing solutions
- Middleware architectures for distributed RT systems
- RMI, RT-Java, and RT-RMI.





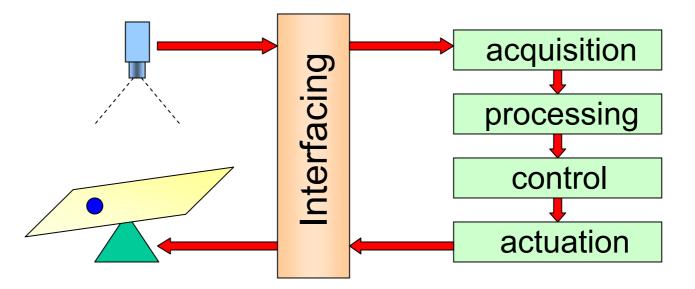
#### **ARTIST Network of Excellence**

International Collaboration Day

October 11<sup>th</sup>, 2003 Philadelphia

## What I think we (ARTIST) should organize to reduce the existing gap




October 11<sup>th</sup>, 2003 Philadelphia

# Summer school on how to build embedded systems

- Teaching basic theory that is not well established everywere in Europe
  - RT-systems, distrib. sys., dependability
- Show how to apply theoretical results
- Help in selecting existing:
  - Methodologies
  - Algorithms
  - Tools
  - Hardware components



#### **Teach concrete examples**



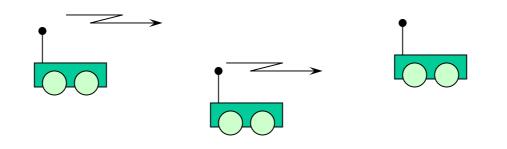
International Collaboration Day

October 11<sup>th</sup>, 2003 Philadelphia

Show how to design the application, starting from a given HW and a set of requirements



October 11<sup>th</sup>, 2003 Philadelphia


#### Many issues can be shown

- Sensor interfacing and acquisition
- Motor interfacing and actuation
- Basic Image processing
- Prediction (e.g., Kalman filtering)
- Use of control techiques
- Sofware design
- Interfacing with the OS
- Analysis: stability, schedulability
- Verification
- Testing



October 11<sup>th</sup>, 2003 Philadelphia

#### **Distributed applications**



- Which wireless protocols?
- How to handle communication errors
- How to synchronize nodes?
- Centralized or distributed scheduling?
- Local vs. global intelligence



October 11<sup>th</sup>, 2003 Philadelphia

# How can ARTIST help

- Building real systems requires expertize in many different fields
- The ARTIST consortium can use excellence from different teams
- Teams should coordinate and agree on specific case studies
- Prepare a school to show how to go from specification to implementation